13. Februar 2023
Energiewende mit Hilfe von künstlicher Intelligenz
Wie künstliche Intelligenz (KI) und erweiterte Sensortechnik den Einsatz von Sensoren in Verteilnetzen revolutionieren können, hat ein Zusammenschluss aus Forschung und Wirtschaft im Verbundprojekt FLEMING seit 2019 untersucht.
Damit wird ein wichtiger Beitrag zur Energie- und Mobilitätswende in Deutschland geleistet. Das Projekt, das vom Bundesministerium für Wirtschaft und Klimaschutz mit insgesamt 3,3 Millionen Euro gefördert wurde, ist nun erfolgreich abgeschlossen worden. Durch den Einsatz von KI wurden flexible Monitoring- und Regelsysteme für die Energie- und Mobilitätswende entwickelt. Die Ausfallsicherheit der Verteilnetze der Mittelspannung kann langfristig erhöht und zentrale Komponenten in Mittelspannungsverteilnetzen können besser überwacht und instandgehalten werden.
Robuste Verteilnetze sind eine Voraussetzung für die Energiewende
Die Herausforderungen der Energie- und Mobilitätswende für deutsche Netzbetreibende sind groß. Die steigende dezentrale Einspeisung erneuerbarer Energie in die Verteilnetze und der Ausbau von Ladestationen für E-Autos führen zu einer zeitlich und räumlich konzentrierten Energienachfrage. Als Folge werden die elektrischen Betriebsmittel und Komponenten der Netze stärker belastet. Um die gleichbleibend hohe Versorgung zu gewährleisten, ist es wichtig, dass die Monitoring- und Regelsysteme der Verteilnetze auch unter erhöhter Belastung zuverlässig funktionieren.
Hier haben die Wissenschaftlerinnen und Wissenschaftler des „SICP – Software Innovation Campus Paderborn“ der Universität Paderborn mit ihrem Forschungsprojekt angesetzt: Sie haben ein neues, KI unterstütztes System entwickelt, das die Funktionen der Verteilnetze kontinuierlich überwacht und Fehler frühzeitig vorhersagt. Durch eine verbesserte Ausfallsicherheit der Verteilnetze der Mittelspannung kann die Verfügbarkeit und Zuverlässigkeit der elektrischen Energieversorgung erhöht werden. Eine solche verbesserte Ausfallsicherheit trägt auch zur Reduzierung von Stromverbrauch und Umweltbelastung bei und ist eine Voraussetzung für die Integration erneuerbarer Energien in das Stromversorgungssystem. Die elektrische Energieversorgung ist für die Funktionsfähigkeit moderner Gesellschaften unerlässlich, daher ist es wichtig, dass die Verteilnetze ausfallsicher und zuverlässig funktionieren.
Informationssysteme optimieren die Instandhaltung der Energienetze
Die Paderborner Forschenden haben mit Stadtwerken und Verteilnetzbetreibenden konkrete Anforderungen aufgenommen sowie grundlegende Architekturentscheidungen und Datenmodelle entwickelt, um ihre bestehenden Prozesse durch Condition Monitoring und Predictive Maintenance zu verbessern. Durch diese Techniken kann der Zustand von Netzkomponenten wie z. B. Schaltanlagen kontinuierlich überwacht werden, um Probleme frühzeitig zu erkennen. Indem Datenanalyse und maschinelles Lernen verwendet werden, kann der Zeitpunkt von Wartungsarbeiten für Anlagen vorhergesagt werden, bevor diese ausfallen. Dies verbessert die Effizienz der Wartung und vermeidet ungeplante Ausfälle.
Anhand dieser Elemente wurde ein umfassendes Dienstleistungssystem für Predictive Maintenance für zentrale Komponenten des Verteilnetzes mit Fokus auf Mittelspannung entwickelt. Ein Kernprodukt des Projekts waren dabei Lasttrennschaltanlagen der Mittelspannung, bspw. hergestellt vom Projektpartner ABB. Lasttrennschaltanlagen werden in Mittelspannungsnetzen verwendet, um Teile des Netzes unabhängig voneinander zu schalten. Sie dienen dazu, Störungen im Netz zu begrenzen und die Ausfallsicherheit zu erhöhen. Mit Lasttrennschaltanlagen kann ein beschädigter Teil des Netzes isoliert werden, ohne dass das gesamte Netz ausfällt. Dadurch wird sichergestellt, dass andere Teile des Netzes weiterhin mit Strom versorgt werden. Weil das intelligente Monitoring- und Regelsystem für Energienetze konsequent als digitales Geschäftsmodell entworfen wurde, wurde durch eine Analyse der Zahlungsbereitschaft final überprüft, ob die Kundschaft, also die Betreibenden der Komponenten bereit sind, für diese Dienstleistung zu zahlen. Im Rahmen einer Marktprognose wurde herausgefunden, dass die wichtigsten Attribute das Condition Monitoring sowie der Preis sind. Zudem liegt die größte Veränderung des Marktanteils in Bezug auf den Preis zwischen 10 und 15 Prozent.
Darüber hinaus wurde ein KI-Radar entwickelt, damit verschiedene KI- und Machine Learning (ML)- Methoden verschiedenen Einsatzzwecken zugeordnet werden können. Zudem wurden die Modelle auf prototypische Daten, die am KIT erhoben wurden, getestet und validiert. ML ist eine Teilmenge von KI, bei der Computer anhand von Daten lernen und Prognosen treffen, ohne explizit programmiert zu werden.